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ON GRADIENT DYNAMICAL SYSTEMS

BY STEPHEN SMALE*

(Received August 29, 1960)
(Revised November 28, 1960)

We consider in this paper a C= vector field X on a C~ compact manifold
M™ (M, the boundary of M, may be empty or not) satisfying the follow-
ing conditions:

(1) At each singular point B of X, there is a cell neighborhood N and
a C~ function f on N such that X is the gradient of f on N in some
riemannian structure on N. Furthermore A is a non-degenerate critical
point of f. Let B, ---, B,, denote these singularities.

(2) If x e M, X at x is transversal (not tangent) to M. Hence X is
not zero on aM.

(3) If x € M let ¢,(x) denote the orbit of X (solution curve) through x
satisfying ®,x) = . Then for each x € M, the limit set of @,(x) as
t — =4 o is contained in the union of the S,.

(4) The stable and unstable manifolds of the 8; have normal intersec-

tion with each other.
This has the following meaning. The stable manifold W;* of B, is the
set of all * € M such that limit, ..®,(x) = 8;. The unstable manifold W,
of B, is the set of all x € M such that limit,,_.. @,(x) = B;. It follows
from conditions (1), (2) and a local theorem in [1, p. 330], that if 3, is a
critical point of index X\, then W, is the image of a 1-1, C° map ¢,: U— M,
where UC R** has the property if x e U,tx € U,0 <t <1 and ¢,
has rank n — M everywhere (see [4] for more details). A similar state-
ment holds for W* with the Uc R*. Now for x € W, (or W;*) let W,,
(or W) be the tangent space of W, (or W;*) at x. Then for each 4, 7,
if x € W, N W}, condition (4) means that

dim W, + dim W — n = dim (W,, 0 W}) .

Here W, and W} are considered as subspaces of the tangent space to M
at «.

For closed manifolds, these vector fields are a special case of those
considered in [4].

THEOREM A. Let f be a C~ function on a compact C* manifold M"
with mon-degenerate critical points. Suppose M is provided with a

* Supported in part by a National Science Foundation Postdoctoral Fellowship, and in
part by National Science Foundation Contract G-115%4.
199



200 STEPHEN SMALE

riemannian metric and that grad f is transversal to M. Then grad f
can be C* approximated by a vector field satisfying conditions (1) to (4).

THEOREM B. Let X be a C* vector field on a compact C= manifold M
satisfying (1)-(4). Denote by V, those points of M at which X s ori-
ented in, and V, those points of OM at which X 1s oriented out. Then
there is a C* function f on M which has these properties:

(@) The critical pointsof f coincide with the singular points of X and
f cotncides with the function of condition (1) plus a constant in some
neighborhood of each critical point.

(b) If X is not zero at x € M, then it is transversal to the level hyper-
surface of f at x.

(c) If B e M isa critical point of f, then f(B) is MB), where M) is
the index of 8.

(d) fhasvalue — L on V,and n + ;on V,.

REMARK. It is easily proved from (a)-(d) that there is a riemannian
metric on M such that grad f = X.
The next theorem follows easily from Theorems A and B.

THEOREM C. Let M™ be a compact C* manifold with oM equal to the
disjoint union of V, and V,, each V, closed in 0M. Then there exists a
C= function f on M with non-degenerate critical points, regular on oM,
f(V)= =% f(V,) =n+ }and at a eritical point Bof f, f(B) = index 5.

For some motivation of these theorems see [4], [5], and [6]. In [4]
Theorem A was announced for the case 0M = ¢, while Theorem C was
announced in [5] for the case 9M = . These theorems have implications
in differential equations on one hand and topology on the other, both of
which we will pursue in future papers.

As this paper was finished, an article by A. H. Wallace [7] appeared
and seems to bear some relationship to this paper.

1. Proof of Theorem A.

First it is easily shown that there exist C* approximations f’ of f such
that f’ is C= and has distinct values at distinct critical points. Thus in
proving Theorem A we can assume f has these properties.

LEMMA 1.1. Let f be a C~ function on a compact riemannian manifold
with non-degenerate critical points and X = grad f is transversal to 0M.
Then a sufficiently close C* approximation X' of X with X' = Xin a
neighborhood of the singular points, satisfies condition (3) above.

(One does not need such strong hypotheses on X’.)
ProOF. One can assume that X and X’ have the property that, except
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at singular points, dfX and dfX’ are positive. Then an orbit ®,(x) of X or

X' is either a singular point or has the property that fo,(x) increases as

¢ increases. Property (3) then follows. This fact that f@,(x) increases as

¢ increases is used in the rest of the paper without mentioning it again.

It implies, for example, that there are no recurrent orbits of X and X'.
By 1.1 it is sufficient for the proof of Theorem A to show:

LEMMA 1.2. If fis a C* function on a compact C= riemannian mani-
Sfold M, with non-degenerate critical points, distinct critical points
having distinct values and X = grad f transversal to M, then there
exist C' approximations Y of X satisfying condition 4)and X= Y on
some neighborhood of the critical points.

Index the critical points 3, of fof 1.2s0 that (83,) > f Bis),t=1,---,7.
Thus 3, is the minimum of f. Denote by W, and W; respectively the
unstable and stable manifolds associated to 8,. Let 5, = f (8;), each 1.

LEMMA 1.3. Given sufficiently small ¢, > 0, j, there is a C* approxima-
tion X' of X such that X' = X outside of f~ (B, + &, B, + 3¢,) and in
the X' system W, and W have normal intersection, each 1.

(““W, in the X’ system’’ has the obvious meaning.)

PROOF. Assume f(B,) + 3¢, < B,,,. Let dim W, = n — k and Q be the
submanifold (8, + 2¢,) N W, of M. Let P = fo=(@" -, 29 |||2] =1}
be the k-disk and I,, = {z| —m =< 2z < m}, m > 0. Then for small enough
m there is a diffeomorphism & of I, x P x Q onto a neighborhood U of
Q sending identically 0 x 0 x Q onto Q and such that X — 0/6z' on U
where 2’ = h(z X 0 x 0) and UcC f(B, + ¢, B, + 3¢). We will identify
points under h so that points of U will be represented by = 2,9), 2] =
m,||z|| <1and y € Q.

The proofs of the following two lemmas will be left to the reader.

LEMMA 1.4. Let I, = [—m, m] and ¢ > 0. Then there is a § > 0 such
that if v < 8, there is a C= function B(z) on I,,, zero in a neighborhood
of 0l,,0 = BRR)<¢ |BR)| Ze¢ and

Sjmﬁ(z)dz = +7.

LEMMA 1.5. Let P be the k-disk as above. There is a C* function v on
P which is zero in a neighborhood of 8P, 0 < v < 1, | (8v/62)) | < 2 and
v(@) =1 for ||z || = 1/3.

With ¢ arbitrary, let §, be the minimum of the 8§ in 1.4 and 1/100, and
let g be the restriction of 7, I, Xx PxQ—0xPx0=P to
U, (0 x Px Q)N Wy. Now by Sard’s theorem [3] choose v € P such
that [[v|| = ¥ < & and +2v is a regular value of g. We can assume,
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using an orthogonal change of coordinates in P, that v = (', -+ +, &%) =
(7,0, -, 0).

Let X’ be the vector field on M which equals X outside U and on U is
given by
0
oxt’

where 8 and v are chosen by 1.4 and 1.5. We claim that X' satisfies 1.3
if the ¢ of 1.4 has been chosen small enough.

To see that X’ is well defined it is sufficient to note that the second
term vanishes in a neighborhood of 8U. It is easy to check that X’ can
be made arbitrarily close in the C* sense to X by choosing the ¢ of 1.4
small enough.

It remains to prove that W, and W have normal intersection in the
X' system for each ¢. So fix ¢ in what follows.

Let 4, be the orbit in the X’ system through « with () = 2 and
denote by W' and W] respectively W;* and W, in the X' system. It is
sufficient to prove W;*' and W) have normal intersection in U since any
point ¢ € W) N W;*' is of the form +(p), »p € U and +r, preserves the
property of normal intersection.

Let V={(z,2,y) e U|llz|| =£1/3}. On V,

0 0
xr=92 g
0z + AR ox*

x' =2 1 B
0z

and integrating the corresponding system of differential equations, we
13

getz(t) =t + K, 2'(t) = S B(t)dt + K,, with the other coordinates con-
0

stant. Then as long as we are in V,

V0, @, y) = (t, o+ S:,B(t)dt, o e, ok, y> .

Using the main property of B(z) in 1.4, {,(0, z, y) stays in V for |[t| =
m, ||z = 1/6, and Yr.n(0, ®, y) = (£m, & = v, y) for ||z || = 1/6.

Let V; and V, denote respectively W;*' N V'and W/ N V' where V' =
{0, %, y) € U|||x || < 1/6}. Then it is sufficient to show that V, and V,
have normal intersection in 0 x P x Q.

Since W,N0 x PxQ=1{0,0,y) e UlyeQ}, and W, = W] when
restricted to {(—m, x, ¥) € U} and also YyL(—m, x, ¥) = (0, x + v, y) for
[[#|] < 1/6, we obtain V, = {(0, +v,y) € U}. Hence if 7p: U— P is the
previously defined projection, 7,(V,;) = +wv. If g is the restriction of 7,
to V,, then g7"(+v) = V,Nn V..

Since the intersection of W and W' with {(+m, x, ¥) € U} are the
same and Vr_,(+m, z,y) = (0, x — v, y) we have
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Vi={0,2—v,9)|0,z,9) e WrnV,[x—o]=1/6}.

This implies that since g has a regular value at +2v, g has a regular
value at +v. Hence dim V;, = dim P + dim (V; N V,) and since dim P=F,
V, and V, have normal intersection in 0 x P x Q. This proves 1.3.

We show that 1.2 follows from 1.3 by induction on the following hy-
pothesis:

H(q): There is a C* approximation X, of X (of 1.2) such that X, = X
in a neighborhood of the 3,, W,_, and W;* have normal intersection in
the X, system for all p < q and all <.

Then J(0) is trivial and H(r) implies 1.2. We will now show that
H(qg — 1) implies 9 (q). Given X, , by H(q — 1) we will construct X,.
We can suppose that df(X,_,) = 0 only on the ;. Let ¢, = 1/4(B,., — By)
and apply 1.3 to obtain an approximation X, of X, , with df(X,) =0
only on the B,, X, = X,_, on a neighborhood of the 3;, and in the X,
system, W;* and W,_, having normal intersection for all 7. But also W,
and W;* will still have normal intersection in the X, system forj > » — ¢
and all 7 since this is true in the X, system, X, = X, , on f*([Bs1, B.])
and W, N W C f([Bgs1» B.]). This finishes the proof of 1.2.

2. Proof of Theorem B.

LEMMA 2.1. Let X be a C= vector field on a compact C* manifold M™
satisfying (1)-(4) with V,and V,the subsets of 0 M described in Theorem
B. Then there exists a set of disjoint closed (n — 1)-dimensional sub-
manifolds B, of M, i = —1,0,1, -+, n with the following properties:

(i) B,=V, B,= V.

(ii) Each B; is transversal everywhere to X.

(iii) Each By, k + —1, n, divides M into two regions whose closures we
denote by G, and H,, with G, D G,_,, H, D H,., and G, containing exactly
those singular points of index < k. For completeness we let G_, = B_,,
H_ = M,G,=Mand H, = B,. Hence, for k= —1,0,---,n,G, N H, =
B, and G, U H, = M.

(iv) On By, X is oriented into H,.

The proof goes by induction on k. Roughly having constructed B,_,,
we augment G,_, by tubular neighborhoods of the stable manifolds cor-
responding to singular points of index & to obtain G, (and hence B;).

Proor. Take B_, = V, and assume we have constructed B,_, with M =
Gy U Hy,_,, G,_, N H,_, = B,_,, G4, containing those singular points of
index =k — 1, and on B,_,, X is oriented into H,_,. We will now con-
struct B,.

Let B,_, x [—1, 1] be a product neighborhood of B, , (in case k = 0,
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take B,_; x [0,1]) with B,_, = B, , x 0, B;_, x [0,1]c H,_, and B,_, x t
transversal to X for each ¢.

Denote by v,,2 =1, ---, r, the singularities of X of index k, and
changing notation let W} = W* and W, = W * denote the stable and
unstable manifolds respectively of v;,,¢ = 1, ---, . Then if x € W}*, the

orbit of x passes through V = B,_, x 1 by Lemma 3.1 of [4] at least once
and hence exactly once (the proof of 3.1 in [5] is for closed manifolds but
applies equally well to our case; this easy lemma is the only use we make
of [4]).

Let v be one of the v,, W= W,, W* = W,*. One chooses from condi-
tion (1) an open neighborhood N of 7, f on N and 8 > 0 such that the
(n — k)-disk bounded by f(8) N W= Wisin N. Let E. be the normal
bundle of W in M restricted to W of vectors with magnitude < ¢. Denote
by S; the image of E. under the exponential map. Assume ¢ > 0is so
small that S, is transversal to X.

If ¢ > 0 is sufficiently small one can define an imbedding 7: S, — W— V,
by sending # € S. — W into the point of the orbit through x meeting V,.
Assume ¢ is this small and denote the image of T with v = v, by K,. for
eachi=1, ..., r. We assume that ¢ is small enough so that these K.
are mutually disjoint.

Now define a C~ imbedding F:8S, x [—1, 1] — M by sending (p, —1)
into p, (p, 1) into T'(p) and (p, t) into the orbit joining p and T(p), the
distance from p proportional to ¢t. Then extend F' to C~ imbedding of
8S. x [—2, 2], which sends p x [—2, 2] into a single orbit, each p.

Next in the construction of G, and B, we modify F slightly to a new C~
imbedding. Fixing some riemannian metric on M, let v(p, t) be the unit
normal vector field on the image of F whose orientation is determined by
the vectors on 88, oriented away from W. For 7, a small positive con-
stant, let F,(p,t) be the point at distance 7t from F(p,t) along the
geodesic determined by v(p, t).

Choose 7 so small that image F, = im F), is disjoint from the K., im F,
is transversal to X everywhere, and im F, N S,, im F, N V, are diffeo-
morphic respectively to im F N S., im F N V,.

Repeating this construction for each singular point 7, we obtain a
hypersurface (singular) B, in M made up of the following pieces:

(a) The part of S, bounded by im F), N S;, one corresponding to each v,;

(b) V, minus pieces bounded by im F, N V, and containing W* n V,,
one such piece corresponding to each 7v;; and

(¢) the part of im F), bounded by im F, N S; and im F, N V,, one for
each v,.
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Then B; has the property that, on each piece, it is transversal to
X, M — B{ = G} U H{, with G}, containing G,_, and all the singular points
of index k. In fact G}, only fails to satisfy G, of 2.1 in that 6G, = B/ is
not a differentiable submanifold, but has corners along im F, N V, and
im F, N S; for each singular point. This is easily modified however to
obtain the desired G, and B, by the device of “‘straightening the angle’’
(see [2] for some discussion), the details of which we leave to the reader.
This finishes the proof of 2.1.

LeEMMA 2.2. Let X be a C~ vector field on a manifold M™ satisfying
conditions (1), (2) and (3) with only singular points of index k. Let V,
and V, be as in Theorem B. Then there is a C= function on M which
satisfies conditions (a), (b), and (c) of Theorem B and has value k — }
on V,value k + L on V,.

ProoF. Let v, «--, v, denote the singular points of X, W, and W,
their respective unstable and stable manifolds. We will first define the
desired function in a neighborhood of U]_ (W, U W). Let N; and f; be
neighborhoods and functions of condition (1) but suppose also N, is as in
the proof of 2.1. Furthermore assume f,(v;) = k by adding appropriate
constants.

Take v = 7;, some 4, f = f,, W= W,, W* = W, and N= N,. Then
let f"(k+8)NN=R,f'(k— 8 =R, with § chosen as in previous
lemma, R. = {(x, y) e R|||y|| < ¢}, and Ry = {(x,y) € R~ ||| = || < &}.

Fix a riemannian metric on M and take ¢ = 1/10. For z € R,, re-define
fon @ x),t =0, so that f(px)) =k + &, f(y) = k + 3 where y is the
point of ¢,(x) meeting V., and on the points between p,(2) and y on ¢,(z),
[ is defined proportionally to arc length. Thus we have obtained an f on
a neighborhood of W satisfying the right boundary conditions, but is not
differentiable on f~*(8). By a smoothing process similar to the one dis-
cussed by Milnor 8.1, 8.2 of [2], f can be made C* on f~(§).

In the same way using R., one gets f defined on a neighborhood Q of
W™ as well as a neighborhood of W which satisfies the condition f(Q N V)=
k — 3. This, by iteration, yields a function f defined on disjoint open
neighborhoods P; of W, U W;* which agrees with the £, on some neigh-
borhoods of the v;, of F(P,NV)=k — %, fF(P,NV,)=Fk+ 1, and f
has only critical points at the v,. Furthermore f satisfies condition (b) of
Theorem B. We can assume without loss of generality that the closures
of the P, are disjoint and if « € P, all of ¢,() lies in P,. We will now
extend f to all of M.

Choose U; C V, N P,, to be a compact neighborhood of W*N V,, i =
1, ..., r. Then let \ be a real C~ function on V, satisfying 0 <) <1,
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r=1loneach U,x=00n V,—U,_, PN V.Foree M — U,_,(W.u W)
let I(x) be the length of the orbit through «, v(x) be the distance from
{p(x)} N V, to z along @,(x) and g(x) =k — & + (v(z))/(I(x)). One can now
show that the function Nf + (1 — X)g on M has the desired properties of
the function of 2.2, where M) = M (x) N V)) or 1if ¢ () does not meet
V.

Finally we prove Theorem B. Take f on the closure of G, — G of 2.1
to be the function of 2.2,k = 0,1, --+,n. One obtains a well defined
function and by smoothing this in a neighborhood of B, «++, B, as in
the proof of 2.2, the desired function of Theorem B is obtained.
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